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Abstract
Recently, Portelli et al (2003), Phys. Rev. Lett. 90 104501 have semi-
numerically obtained a functional form of the probability distribution of
fluctuations in the total energy flow in a model for fluid turbulence. This
follows earlier work suggesting that fluctuations in the total magnetization
in the 2D XY model for a ferromagnet also follow this distribution. Here,
starting from the scaling ansatz that is the basis of the turbulence model we
analytically derive the functional form of this distribution and find its single
control parameter that depends upon the scaling exponents and system size of
the model. Our analysis allows us to identify this explicitly with that of the XY
model, and suggest a possible generalization.

PACS numbers: 05.40.−a, 05.50.+q, 47.27.Eq, 64.60.Ak

1. Introduction

Scaling is an important feature of natural phenomena, arising in many degree of freedom
systems that are highly correlated. In reality these systems support a finite range of scales,
from the microscopic to the system size. If the number of degrees of freedom is sufficiently
large, these systems will still fall into the framework of critical phenomena [1]. Such ‘inertial’
[2] systems include a disparate range of phenomena and, non-intuitively, have recently been
suggested to have a common signature in the statistics of fluctuations in global measures
of activity. This probability distribution function (PDF) has been compared numerically [2]
for a range of models including some for out of equilibrium critical phenomena, notably a
sandpile, a forest fire model, a depinning model and a stacking model for granular media.
After normalization to the first two moments these PDF were found to collapse onto that of
fluctuations in models for equilibrium critical phenomena.
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The functional form of this curve has been identified semi-numerically [3] with the
distribution [2]

P(y) = K eag(u−eu), u = b(y − s) (1)

where the constants K, b and s are fixed by setting the moments M0 = 1,M1 = 0 and M2 = 1,
leaving a single parameter, ag .

The statistics of fluctuations in global quantities have been explored both experimentally
and theoretically for fluid turbulence in closed systems. In the experiments of Labbé
et al [4, 5], the normalized PDF of fluctuations in the power provided to both rotor blades
stirring a closed cylinder of gas at constant angular frequency was also found to have collapsed
onto (1) over a range of Reynolds number Re. These results have been compared with the PDF
of fluctuations in the total magnetization in the 2D XY model for a ferromagnet [6] which
also has been identified with (1) [3]. In the experiment reported by [7] (their figure 2), the
normalized PDF of fluctuations in wall pressure, rather than injected power, appears to follow
these non-Gaussian statistics with insensitivity to Reynolds number [7]. Recently, [8] treated
a model for closed turbulence and obtained a family of curves of form (1) semi-numerically
for global fluctuations of kinetic energy, for which within a sign the experimentally measured
total power is believed to act as a good proxy [8].

There is a continuing debate (see [9–16] and references therein) concerning the origin of
this apparent universality [6, 2]. The aim of this paper is not to establish the existence, or lack
thereof, of a universality class. Furthermore, we do not address the correspondence between
experimentally measured quantities and those captured by models for turbulence (see [8]).

Here, we analytically derive (1) for the model for intermittent turbulence in a finite sized
system treated by [8]. We obtain ag as a function of the model parameters. The analysis
then leads to a direct identification with results obtained previously for the 2D XY model
[17], elucidating the origin of the value ag ∼ π/2 obtained for that system [6, 2]. We then
suggest that the features of the model that are intrinsic to this calculation are rather generic and
discuss how they may encompass the wide variety of systems which have also been previously
identified as exhibiting the same functional form for the fluctuation PDF [2].

2. Model for turbulence in a finite sized system

Portelli et al [8] obtained (1) semi-numerically for intermittent turbulence in the framework
of the KO62 hypothesis which models fluctuations in the energy in the flow.

The essential features of this model are structures on a range of length scales l1 . . . lj . . . lN
from a smallest size l1 = η to the system size lN = L, corresponding to the dissipation and
driving length scales, respectively. The Reynolds number of the flow is then defined as
Re = (L/η)4/3 [18], and the ratio between successive lengthscales (lj / lj−1) = λ

1
3 so that

λN = (L/η)3.
Following [8] we wish to calculate the statistics of the total energy in the flow

ε(t) = ε1(t) + ε2(t) + · · · + εj (t) · · · + εN(t) (2)

from a model expressed in terms of an intermittent energy transfer rate εj on lengthscale lj
drawn from a PDF which has moments〈

ε
q

j

〉 = ε
q

0

(
lj

L

)−µ(q)

(3)

with the condition 〈εj 〉 = ε0 which fixes µ(1) = 0. It follows that the standard deviation

σ 2
j = ε2

0

νj

= ε2
0 [(lj /L)−µ(2) − 1]. (4)
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The individual εj are assumed independent, each with PDF Pj (εj ), giving

P(ε) =
∫

δ


ε −

N∑
j=1

εj


 N∏

l=1

Pl(εl) dεl

= 1

2π

∫ ∞

−∞
eikε dk

N∏
l=1

P̂ l(k) (5)

where P̂ l(k) = ∫
Pl(εl) dεl exp(−ikεl).

In the framework of KO62 this scaling system supports a cascade from large to small
scales, with the intermittency parameter τ(2) = −µ(2). Importantly, although we can
envisage a cascade, the above model does not explicitly require one and will map onto other
models provided that the basic assumptions, namely of εj that are independent and drawn
from a PDF with the scaling property (3), (4), hold.

The Pj will depend upon the details of the system, to make progress we first consider a
tractable choice, the χ2 distribution

Pj (εj ) = Ajε
νj −1
j e−aj εj (6)

and later explore how this may be generalized. The influence of the microscopic distribution
Pj has been explored in the context of the 2D XY model in [19]. This choice for P(εj ) was
used to evaluate (5) semi-numerically in [8]; we will now evaluate it analytically and as a
corollary directly obtain the solution previously obtained semi-numerically for the 2D XY
model [3].

3. Evaluating the characteristic function

The constants Aj , νj and aj of (6) are fixed through (4) so that equation (5) can be written
as [8]

P(ε) = 1

2π

∫ ∞

−∞
eikε dk e−SN (7)

where

SN =
N∑

j=1

1

fj

ln(1 + ikε0fj ) =
N∑

j=1

1

fj

ln

(
1 + ikfj

βσ

N

)
(8)

where

fj = 1/νj = exp(j ā) − 1 (9)

ā = (µ(2)/3) ln λ and where we define total variance as

σ 2 =
N∑

j=1

σ 2
j = ε2

0

N∑
j=1

fj (10)

and β = Nε0/σ . For a specific system, if one has the values of µ(2) and λ, and that (6) is a
good approximation for Pj (εj ), one can evaluate (8) numerically [8]. Here, however, we wish
to establish why (1) appears to also describe the 2D XY model. We proceed by analytically
evaluating (8), and begin with SN . By formal expansion

dSN

dk
= i

βσ

N

∞∑
n=0

(
−ik

βσ

N

)n N∑
j=1

f n
j . (11)
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We need to find Fn = ∑N
j=1 f n

j with the condition that F0 = N and F1 = ∑N
j=1 fj = (N/β)2.

From our definition of the fj we can evaluate F1 and obtain

exp(Nā) = 1 + (N + N2/β2)(1 − exp(−ā)). (12)

In the limit of N/β2 > 1, that is, N � 1, so that | ā |� 1 for finite system size L (i.e. λ → 1)
this gives

eNā ≈ 1 +
N2ā

β2
. (13)

We can now expand the Fn in eNā and substitute (13)

Fn =
N∑

j=1

(ej ā − 1)n =
N∑

j=1

enjā − n

N∑
j=1

e(n−1)j ā + · · ·

= enNā − 1

1 − e−nā
− n

e(n−1)Nā

1 − e−(n−1)ā
+ · · ·

≈ Nn

nā

(
Nā

β2

)n

+ O
Nn−1

nā

(
Nā

β2

)n−1

+ · · · (14)

and in our limit N � 1, | ā |� 1 such that N/β2 > 1 we can take N | ā | /β2 ∼ 1 to give to
lowest order Fn ≈ (Nn/(nā))((Nā)/β2)n where n � 1 (F0 = N). Using this in (11) gives

dSN

dk
= iσβ − iσZ ln(1 + ikσ/Z) (15)

where Z = β/(Nā). This now readily integrates to give

SN(k) = ikσβ + ψ(k) (16)

where

ψ(k) = ikσZ − Z2
(

1 + ik
σ

Z

)
ln

(
1 + ik

σ

Z

)
. (17)

With φ = ε − ε0N = ε − βσ we can write (8) as

P(ε) = 1

2π

∫ ∞

−∞
eikφ e−ψ(k) dk. (18)

The limit Nā → 0,Z → ∞, corresponds to retaining terms up to k2 in (17) and immediately
gives a Gaussian distribution for P(ε). It is tempting to take this as the Gaussian limit of
P(ε), ā → 0, or µ(2) → 0. However, since we insisted that the PDF Pj (εj ) are scaling,
this limit would yield σj → 0 in (4). The case where the Pj (εj ) all have the same (that is,
non-scaling) σj , corresponding to Nā → 0 as this gives F2···N → 0 above. To evaluate (18)
in general we need to retain the property of scaling σj , thus excluding this limit.

We evaluate (18) by the method of steepest descent

P(ε) = eZ
2

σ
√

2π
e− φ

σ
(Z+ 1

2Z )−Z2 e− φ
σZ (19)

which is of form (1) with ag = Z2 + 1/2, that is,

ag = 1

2
+

1

ā
(
eNā − 1

) (20)

and u = −ε(ā/ε0) + (Nā + A) with A just given by the normalization constant K.
The present choice of Pj (εj ), equation (6), gives exactly

P̂ j (k) = 1

(1 + ikκj )
γj

(21)
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with the κj and γj fixed by the moments. Other forms of P̂ j (k) for which (21) is a good (Padé
type) approximant will yield a P(ε) of form (1). We write (21) as

P̂ j (k) =
∞∑

p=0

(−ik)p

p!

〈
ε

p

j

〉


 1 + ikε0 − k2ε2
0

2

(
1 +

1

γj

)
+ · · · (22)

given that 〈εj 〉 = ε0 = κjγj . All the coefficients in this expansion are fixed if we insist that
any Pj that we consider has the same scaling (4) for σj , so that exp(j ā) = (1 + 1/γj ). For
the χ2 PDF (6) this gives γj = νj which is exact. For example, one might anticipate that in
a correlated system that local fluctuations may be multiplicative. An appropriate model for
multiplicative noise is a lognormal PDF

Pj (εj ) = 1√
2π

1

σ̄j εj

exp


−

(
ln

( εj

ε̄j

))2

2σ̄ 2
j


 (23)

which has Padé-type approximant of form (21) fixed by

〈
ε

p

j

〉 = ε̄p e
1
2 p2σ̄j

2
, 1 +

1

γj

= eσ̄j
2
. (24)

Thus if this is a good approximant, the lognormal also yields a curve of form (1).

4. Results for the turbulence model

To make a direct comparison with the results of [6, 8] we write (20) in terms of the parameters
relevant to the turbulence model

ag = 1

2
+

3

µ(2) ln(λ)

(
R

3µ(2)

4
e − 1

)−1

(25)

so that ag depends weakly on the Reynolds number of the flow, on (experimentally determined)
τ(2) and through the logarithm, on the free parameter λ. In figure 1 we show normalized
curves for the range Re = [104, 105, 106] corresponding to ag = [7.7 . . . 3.6] explored by [5],
λ = 2 [8] and typical values of τ(2) [18]. Curves for τ(2) = −0.25 are shown in the main plot
and for τ(2) = −0.2 (used [8]) in the inset. In both cases these show good correspondence
with the solutions from the model (see figures 1 and 2 of [8]). The curves also fall close to
each other explaining the relative insensitivity to Reynolds number [8], and also fall close to
that for ag = π/2 identified by [6] for the XY model, which is also plotted and which we
discuss next.

A more sensitive method for identifying ag from data is to calculate the third moment of
(1) directly [20] rather than compare curves. With M0 = 1,M1 = 0,M2 = 1:

M3 = −Nā

β
= −

√
−τ ln λ

3

(
R

− 3τ
4

e − 1
)

= −
(

ag − 1

2

)− 1
2

(26)

so its magnitude increases with decreasing ag which from (25) corresponds to increasing Re,
consistent with data. The handedness is not determined here; this depends upon how the
global quantity measured experimentally relates to that of the model, namely the energy flow
within the fluid [8].
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Figure 1. Function (1) is plotted for ag = [4.24, 2.76, 1.90] (blue lines), ag = 1.74 (red line)
and ag = π/2 (diamonds) relevant to the model [8] for a closed turbulence experiment, the 2D
XY model and [2], respectively. The inset shows the same axis ranges and replaces the blue
curves with ag = [7.76, 5.18, 3.62] relevant to [8]. The handedness is chosen for comparison with
[2, 6, 8].

(This figure is in colour only in the electronic version)

5. The 2D XY model

The total magnetization in the spin-wave approximation to the 2D XY model was also shown
for a range of system sizes [6] to collapse onto (1), with ag 
 π/2 (for a study of the full 2D
XY model see [21]). The PDF of total magnetization M can be written as [17]

Q(M) =
∫ ∞

−∞

dt

2πσ
e−it M−〈M〉

σ eS (27)

where

S =
∞∑

p=2

(
−it

√
2

a2

)p

ap

2p
, ap = 1

N
p
s

∑
q �=0

1

γ
p
q

and γq specifies the lattice Green’s function. Bramwell et al [3] evaluated this numerically to
demonstrate that it is well described by (1). We now show that the sum S is related to the sum
SN (8) by writing

−SN = −
N∑

p=1

ln(1 + ikε0fp)

fp

=
N∑

p=1

1

fp

∞∑
m=1

(−ikε0fp)m

m

=
∞∑

m=1

(−ikε0)
m

m
Fm−1 = −ik〈ε〉 +

∞∑
p=2

(−ikε0)
p

p
Fp−1 (28)

where 〈ε〉 = Nε0. If we then make the identification

Fp−1ε
p

0 ≡ ap

2

(√
2

a2

)p

(29)

then Q(M) (27) has the same functional form as P(ε) so that it also shares the same distribution
(1) to within the approximations made here, namely, that following expansion (14) we have
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neglected terms of order 1/N , and that (27) is also an approximation, good for N large.
Importantly, from the definition of ap in (27), the rhs of (29) is independent of Ns . In this
sense we have approximately evaluated integral (27) in the thermodynamic limit.

It then just remains to estimate ag for the 2D XY model. In [3] this was approximated
asymptotically, here we simply note that insisting that the normalized Q(M) and P(ε) share
the first three moments yields ag = 1/2 + (a2/2)3/a2

3 from (26) and equation (21) of [3]. They
also calculated the normalized third moment for a square lattice. Their value of M3 = −0.8907
gives ag = 1.7428 which will give curves close to those for ag = π/2 as shown in figure 1.
Our analysis is thus consistent with both a value of ag ≈ π/2 [2], and the asymptotic exponent
of [3].

6. Generalization

A variety of disparate systems have recently been shown numerically [2, 6] to have a common
signature in the statistics of fluctuations in a global measure of activity which is of form (1).
These include out of equilibrium critical phenomena, notably a sandpile, a forest fire model,
a depinning model and a stacking model for granular media.

We will now argue that the scaling ansatz which was our starting point for the model for
fluid turbulence in section 2 and our derivation of (1) may also encompass these disparate
systems.

The ansatz we chose corresponds to that of a scaling system that generates spatial structures
or domains (patches) on length scales l1 . . . lj . . . lN from a smallest size l1 = η to the system
size lN = L. ‘Length scale’ in this more general sense means ‘appropriate characteristic
measure’ i.e. length in one dimension, area in two dimensions or volume in three dimensions.
In a dynamical out of equilibrium system, such as a sandpile or a forest fire model, a steady state
is achieved by driving on the smallest length scale l1 = η and by means of open boundaries,
removing structures on the system size L. In section 2 we considered a system driven on the
largest scale L and dissipating on the smallest, mapping onto fluid turbulence in a closed
system. In a model for a ferromagnet, the system may fluctuate about an equilibrium, but
nevertheless has a minimum patch size (one spin), a maximum patch size (the system size)
and scaling of patches in between.

The global quantity ε is now taken to be associated with the total number of instantaneously
active sites within each patch. In a model realized numerically, such as a forest fire or avalanche
model, instantaneously active sites are those seen at a given timestep in the computation. In a
forest fire model, active sites correspond to burning trees, in an avalanche model, to relaxing
sites in evolving avalanches [2]. The global quantity may refer to the energy dissipated by
these sites, or simply refer to the time evolution of their spatial distribution as in the case of
space occupied by anisotropic particles settling under gravity or magnetization of spins in a
ferromagnet [2].

The common feature of these systems is that at any instant in time there will be mj(t)

patches on any length scale lj and associated with each patch, ε∗
j of this quantity. On each

length scale lj we then have εj = mj(t)ε
∗
j and in total, ε given by (2). We now assert that

in common with the turbulence model, the ε∗
j are independent and have intermittent, scaling

statistics (3). We can then envisage the following generic scaling system which comprises
(I) Non-space filling, intermittent patches. The details of

〈
m

q

j

〉
depend on the system,

for example the probability of patches lj−1 merging, and/or patches lj+1 breaking up to form
patches on lj . We take as a necessary condition of scaling that the moments obey〈

m
q

j

〉
l
γ (q)

j = 〈
m

q

j−1

〉
l
γ (q)

j−1 = 〈
m

q

N

〉
Lγ(q). (30)
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If the system were space filling, γ (1) would be 1 so γ (1) < 1 implies non-space filling
patches. Allowing γ = γ (q) permits intermittency.

(II) Fractal support. On any patch there will be a density of active sites ε∗
j / lj which in

general can vary with lj ; for a system which is scaling we can however take

ε∗
j

lαj
= ε∗

j−1

lαj−1

= ε∗
N

Lα
(31)

where α = 1 is the special case of uniform density on all patches, and patches that do not have
fractal boundaries.

(III) Conservation. Scaling implies that there is no preferred lj on which the active sites
accumulate so that the mean will be just the ensemble average determined on any length scale.
This is consistent with conservation of active sites when patches merge (lj → lj+1) or break
up (lj → lj−1).

It follows from (I), (II) and (III):

〈
ε

q

j

〉 = (ε∗
N)q

〈
m

q

N

〉 ( lj

L

)(αq−γ (q))

= ε
q

0

(
lj

L

)−µ(q)

. (32)

The condition 〈εj 〉 = ε0 fixes γ (1) = α or µ(1) = 0. The details of the system specify µ(2)

which then fixes the standard deviation of (6) expressed through (32) and immediately leads
to (4).

(IV) Finite size. We finally specify the number of length scales N; given scaling, a choice
is constant (lj / lj−1) = λ

1
3 so that λN = (L/η)3.

In summary then, this scaling ansatz is that 〈εj 〉 = ε0,
〈
ε2
j

〉 = ε2
0(lj /L)−µ(2) with µ(2) �= 0

and (lj / lj−1)
3 = λ. Any system that is specified by this ansatz and is well approximated by

(21) will share the same behaviour (1) in the statistics of global activity P(ε) that we have
calculated above for the turbulence model. Importantly, these conditions may apply to more
than one quantity in a given system, and any such quantity will share these same statistics.

For a given system, curve (1) is specified by ag which is a function of the system
parameters N,µ(2) and λ. This family of curves is however insensitive to ag [20]. This,
combined with the practical difficulty of obtaining good statistical resolution over fluctuations
ranging over several orders of magnitude suggests a straightforward reason for the close, but
not exact, curve collapse that has been reported in figure 2 of [2]. Importantly, we do not extend
this argument to the 2D XY model; rather in this case we have utilized the correspondence of
(7) with the result of [17] (equation (27)).

7. Summary

From the starting point of a model for fluid turbulence in a finite sized system, previously
treated semi-numerically by [8], we have analytically derived the functional form of the PDF of
global energy flow in the system. This yielded the dependence of its single control parameter
ag on the intermittency parameter, the ratio between lengthscales, and the smallest and largest
scale lengths in the system (i.e. the Reynolds number). We then directly identified this function
with that previously obtained for fluctuations in total magnetization in the 2D XY model and
thus elucidated the origin of the previously identified value ag ∼ π/2 [2]. The PDF was
shown to be relatively insensitive to variations in ag , explaining the previously reported close
correspondence of these curves for the turbulence model and the 2D XY model [6, 8].

Importantly, the functional form of the PDF that we derive is just that of the sums of a large
but finite sets of independent numbers drawn from PDF with moments that are scaling. This
corresponds to a model of intermittent turbulence in which one also envisages a cascade, but
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the cascade property is not intrinsic to the calculation. We suggest that this system is rather
generic and may encompass the wide variety of systems which have also been previously
identified as exhibiting the same functional form for the fluctuation PDF [2].

Acknowledgments

SCC acknowledges the Radcliffe Institute for Advanced Study, Harvard, and the PPARC for
support. GR acknowledges a Leverhulme Emeritus Fellowship. NWW thanks F McRobie for
assistance.

References

[1] Goldenfeld N 1992 Lectures on Phase Transitions and the Renormalization Group (Reading, MA: Addison
Wesley)

[2] Bramwell S T et al 2000 Phys. Rev. Lett. 84 3744
[3] Bramwell S T et al 2001 Phys. Rev. E 63 041106
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